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ABSTRACT

The COVID-19 pandemic has brought into sharp focus the need to understand respiratory virus
transmission mechanisms. In preparation for an anticipated influenza pandemic, a substantial body of
literature has developed over the last few decades showing that the short-range aerosol route is an
important, though often neglected transmission path. We develop a simple mathematical model for
COVID-19 transmission via aerosols, apply it to known outbreaks, and present quantitative guidelines

for ventilation and occupancy in the workplace.
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1 Introduction

The world is learning to navigate the COVID-19 pandemic
and a great deal of information about the disease is already
available [1, 2, 3]. In order to adjust to this new reality
it is important to understand what can be done to avoid
infection, and to avoid infecting others.

SARS-CoV-2, the coronavirus which causes COVID-19,
is thought to be transmitted via droplets, surface contam-
ination and aerosols [4, 5, 6, 7, 8, 9]. Contact tracing of
COVID-19 outbreaks points to aerosols as a possibly dom-
inant mechanism of transmission since most outbreaks oc-
cur in closed environments, while they are rare in environ-
ments which disfavor aerosol transmission (e.g., outdoors)
[10]. Furthermore, infection via inhalation of aerosols and
small droplets dominates large droplet exposure in most
cases for physical reasons linked to complex, but well un-
derstood fluid dynamics [11, 12, 13, 14]. Despite this fact,
there is a common misconception that aerosol transmission
implies efficient long-range transmission (as in measles),
and thus that the absence of long-range transmission im-
plies an absence of aerosol transmission. The truth is more
nuanced, and includes the possibility of a dominant short-
range aerosol path limited by pathogen dilution, deposition,
and decay [15].

The production of aerosolized viruses by a contagious in-
dividual occurs naturally as a result of discrete events (e.g.,
coughing or sneezing), or through a continuous process
like breathing or talking [16]. Droplets which are formed
with diameters less than ~ 50 ym quickly lose most of
their water to evaporation, shrinking by a factor of 2-3

in diameter and becoming “droplet nuclei”. These fine
particles settle very slowly and mix with the air in the
environment [17].

Aerosol transmission happens when a susceptible individ-
ual inhales these now sub-20 pm droplet nuclei that are
suspended in the air around them [18, 19]. This is thought
to be the dominant transmission mechanism for influenza
and rhinovirus [18, 20] and possibly also for SARS and
MERS [21]. For influenza, it has been shown that aerosol
particles as small as 1.5 um are sufficient for transmission
[22]. Furthermore, it is known from other viral respiratory
diseases that aerosol exposure can result in infection and
illness at much lower doses than other means (e.g., nasal
inoculation) [23].

In line with current recommendations [24], we will assume
that hand-hygiene protocols are being followed sufficiently
well to ensure that surface contamination is sub-dominant.
We will also assume that contagious individuals are wear-
ing some kind of face covering which is sufficient to disrupt
the momentum of any outgoing airflow [25] and catch large
droplets [26]. These actions leave aerosols, investigated
here, as the dominant transmission mechanism.

In the following sections we present a simple model for
aerosol transmission, apply this model to known outbreaks,
and develop guidelines for reducing the probability of trans-
mission in the workplace. We start with a description of
our infection model, followed by aerosol concentration
models for a variety of situations, mitigation measures, a
description of model parameters, and finally a discussion
of risk assessment.
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2 Infection Model

The probability of developing an infection P, given ex-
posure to a volume V' of saliva with a concentration p of
virions is

Pipg =1 — 7P V/ N M
where the infectivity Nj,¢ is the number of virions needed
to make infection likely in the lungs for aerosol inhalation
[23, 27]. The infectivity value Nj,¢ includes probable depo-
sition location (i.e., upper vs. lower respiratory tract) and
local deposition efficiency (e.g., not all inhaled droplets
are deposited in the lungs [23, 28]). It should be noted,
however, that small doses are less likely to cause illness
than what is indicated by Eqn. 1 [23, 29].

Rather than work explicitly with the probability of infec-
tion Pi,¢, we will use the product of the viral dose and the
infectivity

Dinf =p V/Ninf (2)
as a proxy, and refer to it as the “infective dose”. Note that
the infectivity and the viral concentration always appear
together here, so only their ratio p/ Ni,¢ is important in our
model. While p has been measured for COVID-19 [30, 31],
Nint has not been directly measured. We estimate Ni,¢
from influenza and other coronaviruses [27], and check
this value by applying our model to known outbreaks (see
appendix A).

3 Aerosol Infective Dose Model

In this section we compute the infective dose which results
from the presence of a contagious individual in various
scenarios. This informs prescriptions for the maximum
time a susceptible individual may be exposed to potentially
contaminated air, or the minimum time between occupants
in the same space. Each of these calculations uses the val-
ues in Table 1 and concludes with an exposure time limit
for an infectious dose less than D;i#* = 0.1 such that the
accumulation of 4 such does results in a 10% probability
of infection (see section 6).

3.1 Steady State in a Room

A contagious individual will shed virions into the room
they occupy through breathing, talking, coughing, etc.
The aerosolized virion concentration in a room can be
expressed in the form of a differential equation as

dpa(t) Tsre 1 1
= —pa(t — 3
dt po V}oom pA( ) Troom * Ta ( )

where p is the nominal viral concentration in saliva, which
is emitted in aerosol form at a rate of rg.., and 7, is the
viral decay time in aerosol form. The air cycle-time in the
room is

Troom — Vrroom/rroom (4)
where 7,o0m 18 rate at which air is removed from the room
(or filtered locally). The steady-state concentration is
Tsrc TroomTa

eroom Troom + Ta

(&)

PSAS = Po
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and has units of viral copies per liter of air.

Breathing air in a room with an aerosol virus concentration
pa will cause an accumulation of exposure N (number
virions) proportional to the time passed in that room ¢

Na = pa 7ot (6)

such that

Tsrc TroomTa

DSs = 10
" Ninf V;oom Troom T Ta

(7

rpt .

If the room is well ventilated (i.e., Troom <K T,) the infec-
tive dose is approximately

TSI‘C

1nL/min

pss 1m3/min ¢

inf

~ (.01

. ®)
Troom 1 min

for an office, lab or bathroom occupied by a contagious
individual.

The infective dose crosses our example event exposure
threshold of Dif* = 0.1 in an office-like space (7room ~
10 m3 /min ~ 350 cfm) after 100 minutes,

1 nL/min

Tsrc

rroom

toom ~ 100 min ; ,
10 m? /min

max

€))

while in small spaces with less ventilation (e.g., a car or
bathroom with 7o ~ 1 m? /min) the dose would cross
the threshold after only 10 minutes. We have assumed
that the contagious individual is quietly working such that
rsee = V3, but if they are talking (e.g., in video confer-
ence), or coughing occasionally, the source term may be
higher by an order of magnitude or more (e.g., 7sc = V).

~

3.2 Steady State in a Building

When a susceptible individual occupies a room that is con-
nected via the HVAC system to a room occupied by a
contagious individual, there is the possibility of aerosols
passing through the HVAC system [7, 38].

However, the volume of a droplet is proportional to its di-
ameter cubed, which leads to the majority of the viral dose
being delivered in the ~ 10 um droplet nuclei [17, 22],
which are filtered by HVAC systems. Most HVAC fil-
ters will remove the majority of the viral load associated
with COVID-19 transmission, and a high quality filter (i.e.,
MERYV 12) is sufficient to remove > 90% of the larger
droplet nuclei [39]. The remaining aerosols are further
diluted by fresh make-up air, and then spread among all
of the air spaces associated with the HVAC system. The
associated infective dose in rooms connected to a room
occupied by a contagious individual will be roughly

£0 TsysTa
1— fuys
( hyb) Ninf ‘/;ys Tsys + fsysTa

Tsrc

DSys —

inf

rpt  (10)

where fyy is the fraction of the viral dose which is re-
moved by the filters or displaced by make-up air, and
Teys = Tsys/ Vsys 1 the time required to cycle the entire air
volume through the HVAC system.
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Description Symbol Value Reference
Viral Load in Saliva 00 1000 /nL [30, 31, 32]
Sneeze Aerosol Volume Vs 1pL [33, 34]
Cough Aerosol Volume V. 100 nL [33, 34]
Talking Aerosol Volume Vi 10 nL/minute [33, 34]
Breathing Aerosol Volume V 1 nL/minute [33, 34]
Aerosol Decay Time Ta 2h [35, 36]
Breathing Rate T 10 L/minute [37]
Respiratory Infectivity Nint 1000 [27, 23]

Maximum Exposure and Minimum Wait Times

Room Steady State tRoom ~ 100 min 1“2{ inin Ty Eqn. 9
System Steady State t5Ys ~ 100 min 19}‘in = n::,_/cmin 10{)'?;;{:1111 Eqn. 12
Occupancy Wait Time tIE ~ 1 oom In (100 I‘/Ti 11;130#) Eqn. 15
Passage Wait Time tPS ~ 7 oom In (100 Y;ri ‘1/?0’?“3] 1ﬁfin> Eqn. 17

Flow Rate Conversion

1m?/min ~ 35 cfm

Table 1: Parameters used in the aerosol transmission model. See section 5 for more information.

In the well ventilated limit, as above, the infective dose is

04 1 — foys 100 m?3 /min 7g.ct

DY~ 1
0.1 10nL

inf

Y

f sysT'sys
and the maximum occupancy time for Disnyfs < 0.011is

0.1 10nL/min
1= foys Tsre 100 m? /min
(12)

We have set the 7, scale at 10 nL/min to allow for talking
and an occasional coughs from the contagious individual.
The maximum dose used in this example is 0.01 instead of
0.1 due to the likely larger cohort exposed (see section 6).

. wvsTs
tily;x ~ 100 min JoysTsys

To understand why transmission through HVAC systems
appears to be rare we note that even medium quality air
filters (MERV 9) provide better than 99% filtering after
some loading [39]. The value we use here assumes little or
no fresh make-up air and is representative of an unloaded
(i.e., clean) air filter, which is the worst case. Also, in
buildings where the HVAC system does not recirculate air
this type of transmission cannot occur (i.e., foys = 1).

3.3 Transient Occupancy and Events

Some spaces are occupied briefly by many people (e.g.,

bathrooms) and many not have time to come to steady state.

Coughing and sneezing events can also cause a transient in-

crease in the viral concentration in a room. The viral dose

associated with these types of transients can be quantified
L0 Vsrc

as
2 rrcomtra
’]“b e TroomTa dt
Ninf V—room t1

where the transient event occurs at time ¢ = 0 and exposure
is from time t; to to.

DIE —

inf

13)

We can estimate when a room is “safe”” for a new occupant
by computing the dose in the limit of £ — oo,

TE o Vsrc
inf —
Ninf ‘/;oom

where we have again assumed that 700 < 7,. This leads
to a minimum wait time of

—t1/Troom

(14)

Troom b €

15)

Vire 1m3/mi
fTE o~ p o In <100 st m/mm)

1uL

rroom

where we have set the V5, scale at 1 uL to allow for some
coughing or a sneeze from the previous occupant.

As a concrete example, for a 70 square-foot bathroom with
a 70 cfm fan in operation (i.e., Tyoom ~ 10 minutes and
Troom = 2m3 /min), Eqn. 15 gives a 40 minute wait time
between occupants.

Going back to Eqn. 13, we can also compute the exposure
due to brief passage through a common space in which
At =ty — t1 < Troom (€.2., a halls, stairwells and eleva-
tors),

£o Vvsrc —t /
DES ~ = S At et/ Troom - (16)
" Nint Vioom
The minimum time between occupants for DFF < 0.01 is

Viee 10m® At

tPS 17
1L Vicom lmin) A7

~
min = Troom

In (100

which will give negative values for large spaces or short
passage times, indicating that no wait is necessary. How-
ever, this assumes well mixed air, so some mixing time is
necessary to avoid a “close encounter” as described in the
next section. For small spaces with poor circulation (e.g.,
elevators), on the other hand, long wait times are required.
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3.4 Close Encounters

Mixing of aerosols into an airspace may require a few air
cycle-times before a fairly uniform concentration can be
assumed [40, 41]. In order to understand the potential in-
fection risk associated with close proximity, we can make
a very rough estimate of the exposure in the vicinity of
a mask-wearing cougher. The cough momentum will be
disrupted by the mask, but the aerosols will exit the mask
on essentially all sides [42, 25, 16] resulting in a cloud
around the cougher that will then either move with local
air currents or rise with the cougher’s body plume [43].
We assume that the large droplets are trapped in the mask
and the small droplets settle out around the cougher, while
aerosols are dispersed into the air around the cougher. The
infective dose at a distance d for spherical dispersion is

ce _ poVe 3

inf —

D Tyt . (18)

Nig 4rd3 ' °

For a typical cough this leads to

DCE ~ 004 (12 R
inf = d 10 sec

19)

which suggests that an infection risk is still present at short
distances, even if the cougher is wearing a mask [44]. This
analysis is clearly oversimplified, as details of the cough,
the mask, and local air currents will prevent isotropic dis-
persion.

4 Mitigation Measures

The calculations in the previous section allow a variety
of possible mitigation measures. This section briefly de-
scribes some means of reducing the probability of aerosol
infection.

4.1 Masks and Respirators

Masks and respirators can be used to reduce the proba-
bility of infection, both for the wearer and for the people
they interact with. Standard surgical masks provide some
level of protection [45, 46], but they are far less effective
filters than N95 respirators (a factor of 2—10 for surgical
masks, and 8-80 for N95s) [47]. N95 masks have been
demonstrated to be effective in preventing COVID-19 in
a hospital setting [48], but benefiting from them requires
proper fit and user compliance [49, 50, 51, 52, 53], which
suggests that widespread use is likely to be ineffective
[54, 55].

Arguably more important than the mask one wears are the
masks worn by the people one interacts with, both directly
(e.g., in conversation) and indirectly (e.g., by sharing a
common space) [56]. Droplets produced while breathing,
talking and coughing can be significantly reduced by mask
usage [57, 58, 16], but much of the air expelled while
coughing and sneezing goes around the mask [42, 25].
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4.2 HVAC and Portable Air Filters

Increasing air exchange rates in an HVAC system, and
avoiding recirculation can both be used to reduce aerosol
concentrations indoors. Consistent use of local ventilation
(e.g., bathroom fans) can also help to avoid infection. In
buildings and spaces where these measures are not avail-
able or not sufficient, local air filters (a.k.a., air purifiers)
can be used to increase the introduction of clean air into
the space. Small stand-alone units which filter 10 m3 /min
or more are readily available and could help to increase
safety in elevators, bathrooms and small offices.

As noted in sections 3.2 and 5, the particle size of interest
is greater than 1 um, so special filtering technology is not
required [39]. Care should be taken, however, when chang-
ing filters both in stand-alone units and HVAC systems as
they may contain significant viral load. Stand-alone units
should be disabled for at least 3 days before changing the
filter to allow time for viral infectivity to decay [35]. Build-
ing HVAC filters should be changed with proper personal
protective equipment, as recommended by the CDC [39].

4.3 Clean Rooms and HEPA Filters

Many laboratory spaces are outfitted with HEPA filters to
provide clean air for laboratory operations. Clean rooms of-
fer a clear advantage over other spaces as they are designed
to provide air which is free of small particles.

If the HEPA filters are part of a recirculating air cycle, Eqn.
12 can be used with fsys 2 0.999, allowing for essentially
indefinite exposure times. It should be noted, however, that
HEPA filters require lower air-speeds than those offered
by typical HVAC systems and as such are not a “drop in

replacement” option.

Laboratories that use portable clean rooms in large spaces
can be treated in a similar manner, using Eqn. 11 for the
air inside the clean room and Eqn. 8 to represent the clean
air supplied to the laboratory space outside of the portable
clean room.

Any clean room environment is likely to provide sufficient
air flow to make aerosol infection very unlikely in the
well-mixed approximation used in the equations suggested
above. This will leave close encounters, as described in
section 3.4, as the dominant infection path. If there are mul-
tiple occupants in a clean room they should avoid standing
close to each other, or being “down wind” of each other
[59].

4.4 UV-C Lighting

Illumination of the air-space in patient rooms with ultra-
violet light has been shown to dramatically reduce viral
longevity in aerosol form, and thereby prevent infection
[15, 60]. This could be used to decrease 7, in spaces where
increasing air circulation (i.e., reducing Tyo0m) 1 impracti-
cal. Care is required to avoid exposing occupants to UV-C
radiation, which is required for viral deactivation but can
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Figure 1: Left: Probability that the actual infective dose in any given encounter exceeds the nominal dose by some factor
(i.e., Dinr > C’Dionf as a function of the dose ratio C'). The three curves allow some or all transmission parameters to
vary randomly (see section 5 and appendix B). For instance, allowing all parameters to vary (blue trace) the probability
of having Dj,¢ > D?nf is about 10%, D;,¢ > 10 Dionf will happen in about 4% of cases, while 1% of cases will have
Dint 2 100 D? ;. Choosing the nominal viral load po equal to the median value of 1 /nL (rather than the 90'" percentile
as we have) would shift the blue curve to the right by a factor of 1000. Right: Probability of infection as a function of
nominal infective dose Dionf. The three solid curves relate Pi¢ to DiOnf allowing some or all transmission parameters
to vary randomly (as in the left figure), while the dashed curve (grey) shows P, ¢ with fixed parameters as in Eqn. 1.
Allowing all parameters to vary, the probability of infection for a nominal dose of 1 is 14%. A factor of 10 lower D2
reduces the probability of infection to 6%, and D? . < 3 x 1073 is required to reduce the probability of infection below
1%. Choosing the nominal viral load pg equal of 1 /nL rather than 1000 /nL would reduce D ; by 1000 relative to
our calculations in section 3 and shift the blue curve to the left by 1000, such that P,y would remain unchanged. The

“random V.. Nine” curve is used in appendix A to evaluate the probability of infection in cases where p is assumed to

be high.

be harmful to the eyes and skin. This could be done geo-
metrically (e.g., only illuminate spaces above 2.5 m), or
actively with motion sensors.

5 Model Parameters

The parameters used in this model are presented in Table
1. All of these parameters vary between individuals and
events, and as such the values given here are intended to
serve as a means of making rough estimates which can
guide decision making. This section describes the prove-
nance of these values and their variability.

The volume of saliva produced in a variety of activities is
used to understand the emission of virions into the envi-
ronment (known as “viral shedding”). The values given
here are for “typical” individuals and behaviors, and actual
values for any given person or event may vary by an or-
der of magnitude [16, 33, 34, 61, 62]. Droplets produced
while speaking, for instance, depend on speech loudness;
speaking loudly, yelling or singing can produce an order of
magnitude more saliva than speaking normally [63]. We
are careful to avoid quantifying saliva production in terms
of the number of droplets produced, since the large droplet-

nuclei are relatively small in number but carry most of
the virions (i.e., slope of the number distribution is too
shallow to compensate the fact that volume goes with di-
ameter cubed) [33]. For a viral load of 1000 /nL, a 1 um
droplet nucleus, for example, has only a 1% probability of
containing a single virion [63].

The volume of air exchanged with the environment while
breathing (‘“Breathing rate” r}) scales roughly with the
weight of an individual and may vary by a factor of a few.
As such, this is a relatively well determined parameter and
we use only the nominal value in our calculations. The
assumption is that an individual’s tidal volume is about
0.5 L, and the breathing cycle has a 3 s period [37].

The infectivity decay time of SARS-CoV-2 in aerosol
form has been measured and found to be at least a few
hours [35, 36]. Note that we are using the 1/e decay
time, not the half-life, for ease of computation. A separate
decay time-scale is set by the settling time of the larger
aerosol particles which contain the majority of the viral
load. Using the “continuous fallout” model presented in
[11] and the data presented in [63] we estimate this as
Tall ™ Usettle Vioom/Aroom ~ 1hour for a room with a
3m ceiling. In most cases, both the infectivity decay time
and the settling decay time are long enough that they be-
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come irrelevant as the ventilation system is responsible for
removing most of the aerosols.

The viral load in saliva, p, has been seen to vary by more
than 8 orders of magnitude in individuals that test posi-
tive for COVID-19 [30, 31]. Roughly 90% of individuals
tested have a viral load less than py = 1000 /nL, while
1% may have a viral load above 3 x 10* /oL [31]. Vi-
ral load is seen to decline after symptom onset, so the
pre-symptomatic viral load may be on the high-end of the
distribution [30, 32, 64]. We use py = 1000 /nL for our
nominal dose calculations because it results in a rough
estimate of the probability of infection relative to the full
distribution for probabilities of a few percent (i.e., the “ran-
dom pVg.. Nine” curve is close to the other curves around
Dins ~0.03 in Fig. 1, right). This choice does not impact
the final probability of infection shown in Fig. 1, since a
different choice of py would shift the “random pVi;c Nins”
curve to compensate.

The respiratory infectivity, NVin¢, is not well known for
SARS-CoV-2, but it has been measured for SARS [27],
other coronaviruses, and influenza [23]. Variation by an
order of magnitude among individuals is observed both
for coronaviruses and influenza. The number we use,
Nine = 1000, is intended to be “typical” for coronaviruses
and represents roughly 100 “plaque forming units” (PFU)
each of which is roughly 10 virions [27].

This analysis is done under the assumption that all workers
are wearing some form of face covering (“mask”), how-
ever, since effective filtration is difficult to achieve, we
assign no protective value to the wearer for mask use. See
section 4.1 for more information about masks.

6 Risk Assessment

Many alternatives can be expressed in terms of ratio of
the resulting infective dose (e.g., doubling the airflow in
a room, or comparing the dose in an office with that of a
stairwell), such that the exact parameter values used are
not important. However, for computations that require an
absolute evaluation of risk, we compute the probability of
infection given the distribution of Din¢ o< pVire/ Ning, with
Vsre = 1nL, which is common to all dose calculations (see
Fig. 1).

The “random pV,Niy” curve in Fig. 1 (right) can be
used to estimate the probability of a contagious individual
causing infection in the people they interact with, given a
“nominal infective dose” DY) . computed with the param-
eters in Table 1. For instance, if a brief encounter event
delivers DY . ~ 1073, then the probability of infection
is Pyus ~0.4%. The infection probability is fairly large
despite the tiny nominal infective dose because of the non-
negligible probability of the contagious individual having
a very high value of p and thereby delivering Din¢ > D?
(see Fig. 1, left).

The infective dose can be summed over multiple encoun-
ters to compute the probability of infection in at least one

AEROSOL GUIDELINES - MAY 27, 2020

susceptible individual. For example, if a contagious indi-
vidual delivers a dose of DY . ~ 1072 and they do it 10
times to each of 10 susceptible individuals (their “cohort”),
then the total infective dose is DY ; ~ 0.1 and probability
of transmission to at least one person is P, ~6%. (again
using Fig. 1, right).

Note that the final probability of transmission is not the
sum of the infection probabilities for each susceptible in-
dividual because of the correlation between these proba-
bilities (i.e., the viral load of the contagious individual is
common to all events). It is exactly this correlation that
leads to large outbreaks: if a highly-contagious individual
delivers an infective dose D;jy¢ ~ 2 to many individuals
they will each have a 80% probability of being infected
(“random Nj,¢” curve in Fig. 1, right).

The above example shows that limiting the number of po-
tential transmission events between members of a cohort,
and limiting the size of a cohort, are both important to min-
imizing P;.,,. If only 4 encounters are allowed per person,
and the contagious individual only encounters 2 people,
then DY . < 0.05 per encounter gives a total DY . < 0.4
and a 10% probability of transmission.

The distribution of virions via a building’s HVAC system,
discussed in section 3.2, should also be considered as it
represents an interaction with a possibly unintended cohort
(occupants of rooms connected via the HVAC system). In
terms of the previous examples, this behaves as a single
encounter with a large group of susceptible individuals.

An acceptable workplace infection risk could be chosen
such that an infected employee has only a small chance of
infecting another employee during their pre-symptomatic
contagious period. The objective is to ensure that the con-
tribution to the epidemic’s R, value from the workplace
is small, meaning that an employee is more likely to be
infected in other activities (i.e., at home). The second
example described above (with P;;,, = 0.1) would con-
tribute 0.1 to Ry, meaning that for a decaying epidemic
with 0.5 < Ry < 1, an employee would be 5 to 10 times
more likely to be infected away from work than at work.

7 Conclusions

The new world of COVID-19 is here and we will all have
to learn to live in it. Understanding the dangers of this new
world and how to navigate them will be necessary as we
come out of our houses and return to our workplaces.

The calculations presented here suggest that keeping the
risk of infection low in the workplace will require both mit-
igation techniques which lower the viral dose encountered
by susceptible individuals, and small interaction groups
to avoid large outbreaks should a highly-contagious in-
dividual come to work (i.e., a pre-symptomatic “‘super-
spreader”).

Some broad guidelines which we draw from the above
analysis are:
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1. Aerosol build-up in closed spaces should be

treated with care. Avoiding infection requires
good ventilation and/or short exposure times.
Generally, office spaces should not be occupied
by more than one person (see Eqn. 7).

. Small or poorly ventilated common spaces where
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4. Mask use is critical when a minimum of 2 m inter-

personal distance cannot be maintained, but is not
sufficient to prevent infection since most masks
provide limited filtration of aerosols. Distances
less than 1 m remain more dangerous than larger
distances due to leakage of aerosols around the
mask of a contagious individual (see Eqn. 19).

many people spend time (i.e., bathrooms and el-
vators) are of particular concern. At least 4 ven- § Acknowledgements
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A Outbreaks

Documented outbreaks offer a means for checking the plausibility of our aerosol transmission model. In this section we
select a few outbreaks where transmission via aerosols appears likely (e.g., distances were too large for droplets, or the
pattern of infection followed the airflow).

Information about the outbreaks is, however, limited, and the viral load of the contagious individual is not known, so
these comparisons only provide weak constraints on the model parameters. In particular, reported outbreaks are likely
to involve unusually contagious individuals (a.k.a. “super-spreaders”), with pg 2 1000 /nL (roughly 10% of cases), so
we use that value in these computations. Since this fixes the value of p, we use the “random V. Vi ¢ curve in Fig. 1 to
compute the probability of infection.

A.1 Guangzhou Restaurant

[65] documents a COVID-19 outbreak associated with air flow in a restaurant (Guangzhou, China). The space defined
by the wall mounted AC unit is 16 m?. Assuming a modest air cycle-time of 30 minutes ("room ~ 2m3 /min), a
somewhat talkative contagious individual (rg.. ~ 4 nL/min), and a 30 minute overlap between dinners at different
tables, the other dinners were exposed to Dj,s ~0.6. In fact, roughly half of the other dinners contracted COVID-19.

A.2 Hunan Coach

[66] (SCMP article) documents an outbreak on a long distance coach (Hunan, China). This 45 person coach should
have rroom ~ 8m? /min [10], and we will estimate the ride duration as 2 hours. The contagious individual did not
interact with others, so we assign a source rate of rg,c = r, = 1 nL./min. The resulting infective dose of Dj,s ~0.15
is in reasonable agreement with the fact that 8 of the 45 passengers were infected. The infections were somewhat
localized, possibly due to incomplete mixing of the air in the bus.

This outbreak also resulted in the infection of a passenger who boarded 30 minutes after the contagious passenger had
disembarked. This could have been due to surface contamination, but then one must wonder why no passengers on later
voyages were infected (since fomites last for days) [35]. More likely it indicates that a few air cycle-times passed while
the bus was stopped resulting in an order of magnitude reduction in infective dose, and continued during the voyage
thereby clearing the air. (Outbreaks on vehicles were common in China, possibly due to poor ventilation [10].)
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A.3 Seattle Choir

[67, 68] Of 60 singers 87% infected after singing together for 2.5 hours in a church the size of a volleyball court
(~ 400m?). An air cycle time of 40 minutes gives 7;oom ~ 10m3/min, and singing can be approximated by
Tsre ~30nL/min. The 150 minute exposure yields an infective dose of Djn¢ ~4.5. Sadly, this makes the probability
of infection quite high. Even more sadly, this is not the only choir outbreak [69, 70]. (Like choir practice, aerobic dance
classes [71], and call centers [72], are ideal environments for SARS-CoV-2 transmission.)

A.4 Diamond Princess

[73] concludes from the outbreak on the Diamond Princess cruise ship that long-range airborne transmission is unlikely
since SARS-CoV-2 did not pass through the ship’s air conditioning system. Two Okinawa taxi-drivers were, however,
infected by passengers during a shore visit. This outbreak is different from the others in that the contagious individual
which initiated the outbreak was not involved in the taxi-driver infections. At the time of the shore visit in Okinawa there
were roughly 25 pre-symptomatic infected passengers on the Diamond Princess at least a few of whom disembarked.

If we assume that the taxi ride lasted 10 minutes (the port in Naha is close to the main attractions), that the contagious
passenger spent the ride talking to another passenger (or coughed once), and that the taxi had the fan on low (7.0om ~
1m?3 /min), the driver was exposed to an infective dose of Djn¢ ~ 1 according to Eqn. 7. Using the “random pVire Nipg’
curve in Fig. 1 since these were secondary infections, we find that the probability of transmission was about 15% for
each contagious passenger who disembarked. This probability is relatively insensitive to our assumptions and would
only change by a factor of 2 if the dose changed by an order of magnitude (in either direction). If both infections in
Naha were caused by the same contagious individual (one on the ride in, one on the ride out) it would be appropriate to
use the “random V.. Njns” probability of 60%.

0l

Notably, there were no other COVID-19 infections linked to the Diamond Princess’ stop in Okinawa, indicating that the
closed environment and long exposure time of the taxi was likely a key ingredient for transmission. That is, changing
the air-flow rate in the above calculation to 750, = 100 m? /min to represent shops and more open spaces would
reduce the probability of infection to less than 2%. And, while surface transmission could explain transmission to taxi
drivers, it does not explain the absence of transmission to shop keepers or other people with whom the passengers of the
Diamond Princess interacted.

A.5 Hospital Air Sampling

There was no outbreak in the Nebraska Medical Center, but air sampling in and around COVID-19 patient rooms
[74] offers a further cross-check of the calculations presented here. Approximately 3 viral RNA copies per liter of
air sampled were found in a patient’s room (and in the hallway outside the patient’s room after the door was opened).
These rooms have Tyoom ~ 8 min and Vigom ~ 30 m3, indicating an airflow rate of r.oop, ~4 m3 /min [40]. Equation
5 indicates a steady-state concentration of p3°> ~ 0.25 /L. This suggests that either this patient had a very high viral
load (p ~ 10'° /mL, which is in the top 3%), or that they were occasionally talking or coughing and had p ~ py.

Air sampling data is also available from hospitals and public areas in China. [75] reports quantitative viral deposition
rate of roughly 2 /m? per minute in a patient’s room. The area sampled was 3 m from the patient’s bed, so too far for
most droplets [11]. If we assume that this is due to slow settling of the larger droplet-nuclei with characteristic a speed
of Usettle ~ 0.1 m/min (see section 5 and [11, 63]), this implies a aerosol concentration of roughly 20 / m?. (Oddly, air
samplers in patient rooms did not detect concentrations above their detection threshold, but the patient’s bathroom and
other areas in the hospital had concentrations near 20 /m?).

A concentration of 20 /m? is more than a factor of 100 lower than that reported in Nebraska [74], but still implies p above
the median of the distribution function shown in Fig. 2. If we assume an air flow rate in the room of 7.5 ~4 m3 /min
and viral shedding dominated by breathing (i.e., Vz.. ~ V3), for instance, p is roughly 10% /mL = pg/10.

B Parameter Probability Distributions

As described in section 5 several parameters used in this work vary significantly between individuals and events. This
appendix describe the details of the probability density functions use for p, Vi, and Niyg.

Figure 2 shows the distribution for p. The estimated distribution used in this work is derived from [31] with the low
end of the distribution pushed up somewhat to account for the downward trend in viral load after symptom onset. The
log-normal distribution centered at 10° /mL with ¢ = 10? is estimated from the linear fit in figure 2 in [32]. These
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distributions both have a median viral load of 10° /mL and roughly 10% of cases above 10° /mL. We have computed
Piyr as in Fig. 1 for both distributions and they give quantitatively similar, and qualitatively identical, results.

To account for individual variability, we use a log-normal distribution for /V;,s which is centered around 1000 and has a
width of a factor of 2. This makes the 95% confidence interval 250-4000 which is in reasonable agreement with [27]
and [23].

Similarly, an order of magnitude variation among individuals and events is also expected in in droplet and aerosol
production [61, 63]. For this we also use a log-normal distribution centered around the Vj;. values given in Table 1 with
a width of a factor of 3.
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Figure 2: Probability density functions for p. The estimated distribution used in this work in shown along with a
log-normal distribution centered at 106 /mL. The vertical line at 10° /mL indicates our “nominal po” of 1000 /nL.
10% of the estimated p distribution lies above this line and 7% of the log-normal distribution lies above it.
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